Version

    Merging existing metadata

    You can create new metadata by combining two or more existing metadata into one new metadata object. Fields and their settings are copied from the selected sources into the new metadata.

    Conflicting field names are resolved either:

    • automatically - two options: only the first field is taken; or duplicates are renamed (e.g. field_1, field_2, etc.);

    • manually, which is the second step of this wizard.

    The Merge metadata dialog lets you choose which metadata and which fields will go into the result. You can invoke the dialog:

    1. In Outline, right-click two or more existing metadata.

      or

      Metadata  New metadata  Merge existing

      OR

      Right click an edge and click New metadata.

    2. Click Merge metadata…​ (Merge existing).

    3. You will continue in a two-step wizard. In its first step, you manage all fields of the metadata you have selected. Select only those you want to include in the final merger (they are highlighted in bold):

      metadata merge
      Figure 245. Merging two metadata - conflicts can be resolvedin one of the three ways (notice the radio buttons at the bottom).
    4. Click Next to review merged metadata or Finish to create it instantly.

    Merging SQL query metada

    SQL query metadata cannot be merged.

    Creating database table from metadata and database connection

    As the last option, you can also create a database table on the basis of metadata (both internal and external).

    When you select the Create database table item from each of the two context menus (called out from the Outline pane and/or Graph Editor), a wizard opens with an SQL query that can create database table.

    01680
    Figure 246. Creating database table from metadata and database connection

    You can edit the contents of this window if you want.

    When you select some connection to a database. For more details, see Database Connections. Such database table will be created.

    If multiple SQL types are listed, actual syntax depends on particular metadata (size for fixed-length field, length, scale, etc.).

    Table 21. CloverDX-to-SQL data types transformation table (Part I)

    DB type

    DB2

    Hive

    Informix

    MSAccess

    CloverDX type

    boolean

    SMALLINT

    BOOLEAN

    BOOLEAN

    BIT

    byte

    VARCHAR(80) FOR BIT DATA

    BINARY[1]

    BYTE

    VARBINARY(80)

    CHAR(n) FOR BIT DATA

    BINARY(n)

    cbyte

    VARCHAR(80) FOR BIT DATA

    BINARY[1]

    BYTE

    VARBINARY(80)

    CHAR(n) FOR BIT DATA

    BINARY(n)

    date

    TIMESTAMP

    TIMESTAMP[1]

    DATETIME YEAR TO SECOND

    DATETIME

    DATE

    DATE

    DATE

    TIME

    DATETIME HOUR TO SECOND

    TIME

    decimal

    DECIMAL

    DECIMAL[2]

    DECIMAL

    DECIMAL

    DECIMAL(p)

    DECIMAL(p)

    DECIMAL(p)

    DECIMAL(p,s)

    DECIMAL(p,s)

    DECIMAL(p,s)

    integer

    INTEGER

    INT

    INTEGER

    INT

    long

    BIGINT

    BIGINT

    INT8

    BIGINT

    number

    DOUBLE

    DOUBLE

    FLOAT

    FLOAT

    string

    VARCHAR(80)

    STRING

    VARCHAR(80)

    VARCHAR(80)

    CHAR(n)

    CHAR(n)

    CHAR(n)

    1

    Available from version 0.8.0 of Hive

    2

    Available from version 0.11.0 of Hive

    Table 22. CloverDX-to-SQL data types transformation table (Part II)

    DB type

    MSSQL

    MSSQL

    MySQL

    Oracle

    Pervasive

    CloverDX type

    2000-2005

    2008 or newer

    boolean

    BIT

    BIT

    TINYINT(1)

    SMALLINT

    BIT

    byte

    VARBINARY(80)

    VARBINARY(80)

    VARBINARY(80)

    RAW(80)

    LONGVARBINARY(80)

    BINARY(n)

    BINARY(n)

    BINARY(n)

    RAW(n)

    BINARY(n)

    cbyte

    VARBINARY(80)

    VARBINARY(80)

    VARBINARY(80)

    RAW(80)

    LONGVARBINARY(80)

    BINARY(n)

    BINARY(n)

    BINARY(n)

    RAW(n)

    BINARY(n)

    date

    DATETIME

    DATETIME

    DATETIME

    TIMESTAMP

    TIMESTAMP

    DATE

    YEAR

    DATE

    DATE

    TIME

    DATE

    TIME

    TIME

    decimal

    DECIMAL

    DECIMAL

    DECIMAL

    DECIMAL

    DECIMAL

    DECIMAL(p)

    DECIMAL(p)

    DECIMAL(p)

    DECIMAL(p)

    DECIMAL(p)

    DECIMAL(p,s)

    DECIMAL(p,s)

    DECIMAL(p,s)

    DECIMAL(p,s)

    DECIMAL(p,s)

    integer

    INT

    INT

    INT

    INTEGER

    INTEGER

    long

    BIGINT

    BIGINT

    BIGINT

    NUMBER(11,0)

    BIGINT

    number

    FLOAT

    FLOAT

    DOUBLE

    FLOAT

    DOUBLE

    string

    VARCHAR(80)

    VARCHAR(80)

    VARCHAR(80)

    VARCHAR2(80)

    VARCHAR2(80)

    CHAR(n)

    CHAR(n)

    CHAR(n)

    CHAR(n)

    CHAR(n)

    Table 23. CloverDX-to-SQL data types transformation table (Part III)

    DB type

    PostgreSQL

    Snowflake

    SQLite

    Sybase

    Generic

    CloverDX type

    boolean

    BOOLEAN

    BOOLEAN

    BOOLEAN

    BIT

    BOOLEAN

    byte

    BYTEA

    VARBINARY

    VARBINARY(80)

    VARBINARY(80)

    VARBINARY(80)

    VARBINARY(80)

    BINARY(n)

    BINARY(n)

    cbyte

    BYTEA

    VARBINARY

    VARBINARY(80)

    VARBINARY(80)

    VARBINARY(80)

    BINARY(n)

    BINARY(n)

    BINARY(n)

    date

    TIMESTAMP

    TIMESTAMP

    TIMESTAMP

    DATETIME

    TIMESTAMP

    DATE

    DATE

    DATE

    DATE

    DATE

    TIME

    TIME

    TIME

    TIME

    TIME

    decimal

    NUMERIC

    DECIMAL

    DECIMAL

    DECIMAL

    DECIMAL

    NUMERIC(p)

    DECIMAL(p)

    DECIMAL(p)

    DECIMAL(p)

    DECIMAL(p)

    NUMERIC(p,s)

    DECIMAL(p,s)

    DECIMAL(p,s)

    DECIMAL(p,s)

    DECIMAL(p,s)

    integer

    INTEGER

    DECIMAL(10,0)

    INTEGER

    INT

    INTEGER

    long

    BIGINT

    DECIMAL(19,0)

    BIGINT

    BIGINT

    BIGINT

    number

    REAL

    FLOAT

    NUMERIC

    FLOAT

    FLOAT

    string

    VARCHAR(80)

    VARCHAR

    VARCHAR(80)

    VARCHAR(80)

    VARCHAR(80)

    CHAR(n)

    VARCHAR

    CHAR(n)

    CHAR(n)

    CHAR(n)