Chapter 8. Postinstallation Configuration
Memory Settings |
Maximum Number of Open Files |
Maximum Number of Processes or Threads |
Firewall Exceptions |
Memory Settings
Current implementation of Java Virtual Machine allows only a global configuration of memory for the JVM system process. Thus the whole application server, together with WARs and EARs running on it, share one memory space.
Default JVM memory settings is too low for running an application container with CloverDX Server. Some application servers, like IBM WebSphere, increase JVM defaults themselves, however they still may be too low.
The optimal memory limits depend on many conditions,
i.e. transformations which CloverDX should execute.
Please note that the maximum limit isn't the amount of permanently allocated memory, but limit which can't be exceeded.
If the limit is exhausted, the OutOfMemoryError
is raised.
JVM Memory Areas
JVM memory consists of several areas: heap memory, PermGen space, direct memory and stack memory. Since JVM memory is not just HEAP memory, you should not set the HEAP limit too high; in case it consumes whole RAM, JVM won't be able to allocate direct memory and stack for new threads.
Table 8.1. JVM Memory Structure
Type | Description |
---|---|
Heap memory | Heap is an area of memory used by JVM for dynamic memory allocation. Required heap memory size depends on various factors (e.g. complexity of graphs, number of graphs running in parallel, type of component, etc.), see the respective server container's installation guide in this documentation. (Note that current heap memory usage can be observed in CloverDX Server Console.) |
PermGen Space | Permanent Generation - separate memory space containing class definitions and related metadata. (PermGen was removed from Java 8.) |
Direct Memory | Memory used by graph edges and buffers for I/O operations. |
Stack Memory | Stack Memory contains local, method specific variables and references to other objects in the method. Each thread has its own stack; therefore, the memory usage depends on the number of components running in parallel. |
Configuring Memory
You can set the minimum and maximum memory heap size by adjusting the "Xms" and "Xmx" JVM parameters. There are more ways to change the settings depending on the used application container.
Recommended Server Core and Worker Heap Memory Configuration
Optimal distribution of main memory between Server Core and Worker depends on the nature of executed tasks. The recommended defaults of Server Core heap size and Worker heap size for different RAM sizes are in the table below.
Heap limit is not a limit of the full memory used by JVM. JVM uses memory in addition to the heap size for other memory spaces, e.g. direct memory. We recommend to set the heap limit to no more than 80% of system memory size, to leave space for the operating system and other JVM memory spaces.
Table 8.2. Recommended Heap Memory
RAM Size | Server Core Heap | Worker Heap | Remaining for OS (estimated) |
---|---|---|---|
4 GB | 1 GB | 1 GB | 1 GB |
8 GB | 2-3 GB | 2-3 GB | 2 GB |
16 GB | 4 - 8 GB | 4 - 8 GB | 4 GB |
32 GB | 4 - 8 GB | 16 - 20 GB | 8 GB |
64 GB | 4 - 8 GB | 42 - 52 GB | 8 GB |
Memory Configuration in Java 8
In Java 8, the memory space for loading classes (so called "Metaspace")
is separated from heap, and can be set by the JVM parameter -XX:MaxMetaspaceSize
.
The default maximum Metaspace size is unlimited.
Please see the specific container section for details on memory settings.
Metaspace
We recommend you to put limit on metaspace memory.
Add -XX:MaxMetaspaceSize=size
to command line parameters of Server Core or Worker.
Replace size
with a suitably high limit.
512MB should be enough.
See https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
Direct memory
To avoid excessive usage of direct memory, we add -Djdk.nio.maxCachedBufferSize=262144
Worker's command line.
We recommend you to add this system property to the command line of Server Core, as well.
This system property is available since java 1.8.0_102.
In Apache Tomcat, add this system property to JAVA_OPTS
environment variable,
which is configured in bin/setenv.sh
file.
Codecache Size
Some CloverDX Server installations can occasionally run into performance issue: JVM is running more than hundred times slower. The issue can be caused by a full code cache (Java SE Embedded: Developer's Guide - Codecache Tuning). The reserved code cache size is platform dependent and can be too small for CloverDX Server. It is highly recommended to increase the code cache size using the following JVM argument:
-XX:ReservedCodeCacheSize=256m
Maximum Number of Open Files
When using resource-demanding components, such as FastSort,
or when running a large number of graphs concurrently, you may reach the system limit on simultaneously open files.
This is usually indicated by the java.io.IOException: Too many open files
exception.
The default limit is fairly low in many Linux distributions (e.g. 4,096 in Ubuntu). Such a limit can be easily exceeded, considering that one FastSort component can open up to 1,000 files when sorting 10 million records. Furthermore, some application containers recommend increasing the limit themselves (8,192 for IBM WebSphere).
Therefore, it is recommended to increase the limit for production systems. Reasonable limits vary from 10,000 to about 100,000 depending on the expected load of CloverDX Server and the complexity of your graphs.
The current limit can be displayed in most UNIX-like systems using the ulimit -Sn command.
The exact way of increasing the limit is OS-specific and is beyond the scope of this manual.
Maximum Number of Processes or Threads
If you run graphs with many subgraphs containing many components,
you may reach the limit on number of threads per user or per system.
In this case, you can find java.lang.OutOfMemoryError: unable to create new native thread
in a graph's log.
The current limit on number of processes/threads per user can be displayed in most UNIX-like systems using the ulimit -Su command. Note that the documentation on ulimit may not distinguish between processes and threads. The limit on number of threads per system can be displayed using the sysctl kernel.threads-max command. The exact way of increasing the limit is OS-specific and is beyond the scope of this manual.
Firewall Exceptions
In order to function properly, CloverDX Server requires an outside communication. The table below describes both incoming and outgoing communication of CloverDX Server. Please, configure your firewall exceptions accordingly.
Table 8.3. Firewall Exceptions
Traffic | Communication | Description & Components |
---|---|---|
Incoming | HTTP(S) | Communication between Designer and Server |
JMX | Tracking and debugging information | |
Outgoing (depending on an actual usage) | JDBC | Connection to databases (DatabaseReader, DatabaseWriter, DBExecute) |
MX | Receiving and sending JMS messages (JMSReader, JMSWriter, JMS Listener) | |
HTTP(S) | Requesting and receiving responses from servers (Readers, WebserviceClient, HTTPConnector) | |
SMTP | Sending data converted into emails (EmailSender) | |
IMAP/POP3 | Receiving emails (EmailReader) | |
FTP/SFTP/FTPS: | Remote file reading and writing (readers, writers) |
Garbage Collector for Worker
We recommend using the G1 garbage collector for Worker, as it behaves better on huge heaps and causes shorter full stops of the Java Virtual Machine. G1 is the default garbage collector in Java 9 or newer; however, for Java 8 the Parallel garbage collector is the default and G1 is just optional. Because of that, CloverDX automatically enables G1 garbage collector for Worker on Java 8.
If worker.javaExecutable is not specified and no specific garbage collector is selected by the worker.jvmOptions property, CloverDX uses the G1 garbage collector on Worker by default on Java 8. So if you modify the JVM used by Worker, we don't set G1 by default. Also, if you specify a different garbage collector, we don't override this setting.
Selecting Garbage Collector
Java 8 uses the Parallel garbage collector by default, which we override for Worker to use the G1 garbage collector.
If you wish to use a different garbage collector than G1 for Worker,
then it must be specified by adding the -XX:+UseParallelGC
(for Parallel GC)
command line option for the Worker's JVM using the worker.jvmOptions property.
See also Enabling GC Logging.
Reverse Proxy Configuration
CloverDX Server instance can run behind a HTTP proxy that provides services such as logging, SSL termination, caching, load balancing, access control, etc. However, the proxy may break some parts of the CloverDX Sever console. For instance, the endpoint URL for Data Services will not show the public URL used in the web browser, but the internal URL of CloverDX Server instance, as seen by the proxy. That is because the Data Service endpoint URL is constructed from the incoming request and the request no longer comes from the client, but from the proxy.
As a workaround, you may configure the proxy to override the URL using the following HTTP headers:
X-Forwarded-Proto
- URL scheme (protocol), e.g. "https"
X-Forwarded-Host
- the hostname (and optionally, the port), e.g. "my-proxy-host:80"
X-Forwarded-Port
- the port number, overrides X-Forwarded-Host, e.g. "80"
X-Forwarded-Prefix
- the context path including the leading slash, e.g. "/mycontext"
The following snippets show configuration examples for commonly used proxy servers.
Example 8.1. Apache HTTP Server Proxy Configuration
# Requires mod_proxy module <Location "/mycontext"> # Enable proxy ProxyPass "http://cloverdx-svc:8080/clover" # Pass "Host" header value; alternatively, set X-Forwarded-Host ProxyPreserveHost On # Fix "Location" response headers in redirects ProxyPassReverse "http://cloverdx-svc:8080/clover" # Add "X-Forwarded-Proto" header when running as a SSL terminator #RequestHeader set X-Forwarded-Proto "https" ### Only necessary when changing the context path from "/clover" to something else: # Add "X-Forwarded-Prefix" header to override the context path RequestHeader set X-Forwarded-Prefix "/mycontext" # Fix path in "Set-Cookie" headers ProxyPassReverseCookiePath "/clover" "/mycontext" </Location>
Example 8.2. NGINX Proxy Configuration
events { } http { server { # simple reverse-proxy listen 80; location /mycontext { # Enable proxy proxy_pass http://cloverdx-svc:8080/clover; # Pass "Host" header value; alternatively, set X-Forwarded-Host proxy_set_header Host $http_host; # Fix "Location" response headers in redirects proxy_redirect http://$http_host/clover http://$http_host/mycontext; # Add "X-Forwarded-Proto" header when running as a SSL terminator #proxy_set_header X-Forwarded-Proto https ### Only necessary when changing the context path from "/clover" to something else: # Override context path proxy_set_header X-Forwarded-Prefix /mycontext; # Fix path in "Set-Cookie" headers proxy_cookie_path /clover /mycontext; } } }
Note | |
---|---|
Continue with: Chapter 14, System Database Configuration |